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The phase and group velocities of second sound modes in superfluid helium are obtained for arbitrary values
of the relative velocity of the normal and superfluid components. We show that the phase and group velocities
of second sound, in general, depend on the angle between the wave vector and the relative velocity between the
normal and superfluid components w. We have found the relationship between the amplitudes of the oscillating
variables that describe second sound. In the general case, the normal fluid not only has a velocity component
parallel to the wave vector, but also a transverse velocity component. The general expressions for the velocities
and amplitudes are analyzed when the normal fluid is only due to phonons. We find that there is a certain value
of w which makes the second-sound wave stationary in the laboratory frame. We show that the amplitude of
the temperature oscillation, in a second-sound wave in an anisotropic phonon system, can be zero under some
conditions.
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I. INTRODUCTION

In superfluid 4He, it is possible to create pulses of thermal
excitations which have high values of the relative velocity
between the normal fluid and the superfluid.1 Such pulses
can be injected into liquid helium, which is so cold that it has
negligible thermal excitations, by a heater. Another way to
create a large relative velocity is to make the helium move
through narrow channels which lock the normal fluid. In
both these systems, the velocity of the normal fluid, or the
superfluid, can be very close to the critical velocity. Such
systems have been investigated both theoretically2–5 and
experimentally.6–10

Both first and second-sound modes in superfluid helium
have been investigated over a long period �see, for example,
Ref. 11 and references therein�. But almost all these consid-
erations were limited to zero or small values of the relative
velocity w=vn−vs, where vn and vs are the normal and su-
perfluid velocities. As we now have the opportunity to ex-
perimentally investigate the propagation of sound modes
with high values of w= �w�, we need to extend the existing
theory of sound propagation in superfluid helium to high
values of the relative velocity, which can be close to the
critical velocity of a phonon system. The first theoretical step
was made in Ref. 12, where the velocity of first and second
sound was found for small w, i.e., in an approximation which
is linear in w. Also, the thermal-expansion coefficient of liq-
uid helium was assumed to be zero.

An attempt to solve the problem of second-sound propa-
gation for arbitrary values of w was made in Ref. 13. In that
paper, liquid helium is taken to be incompressible, with zero
oscillation of the total momentum. The pressure was then
found from the expression for the momentum flow tensor
and the momentum conservation law, without considering
the other equations of the system. But in fact assuming in-
compressibility of helium and zero oscillations of the total
momentum in second sound imply that we should omit the
momentum conservation law from the set of equations that
describe the system. Thus, the dispersion relation of second
sound obtained in Ref. 13 is incorrect.

Some preliminary results on the dispersion relation for
second sound at arbitrary values of w, assuming incompress-
ibility of helium, were reported at the conference in Ref. 14.
The relationship between the amplitudes of the variables de-
scribing first sound, at arbitrary values of the relative veloc-
ity w and when the thermal excitation contribution is small,
were obtained in Ref. 15. The existence of the transverse
mode, and the general relations between the amplitudes in
this mode for arbitrary value of w, were established in Ref.
16, where we also discussed the possibility of experimentally
detecting the transverse mode in phonon pulses in superfluid
helium.

It should be noted that the experiments on scattering and
propagating phonon pulses in superfluid helium do not show
any scattering from vortex lines. So it would appear that high
values of the relative velocity in phonon pulses do not create
enough vortices, either within the propagating phonon pulse
or outside it in superfluid helium, to be a problem. We also
see from experiments �see, for example, Refs. 6, 9, and 10
and the references cited therein� that there exist phonon sys-
tems �phonon pulses� that have a velocity equal to the sound
velocity relative to the superfluid. Such phonon systems do
not include either rotons or vortices. Other experiments �see,
for example, Ref. 21� show that in these strongly anisotropic
phonon systems, at low pressure, phonons strongly interact
and this interaction leads to a quasiequilibrium state. The
phonon systems described above have also been intensively
studied theoretically. In particular, it was shown theoretically
using general relations that quasiparticle systems, with large
values of w close to the sound velocity, are thermodynami-
cally stable,2 and that they possess unique thermodynamic
properties.4,5 These points are discussed in detail at the be-
ginning of Sec. V.

In this paper we find the phase and group velocities for
second sound at arbitrary values of w, using the hydrody-
namic equations for superfluid helium, with the condition
that the normal density �n is small compared to the helium
density �. We show that the phase and group velocities of
second sound in general depend on the angle between the
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wave vector and w. The phase and group velocities can be
characterized by three parameters: the longitudinal V�, per-
pendicular V�, and drift Vd velocities.

We find the relationships between the amplitudes of the
oscillating hydrodynamic variables in a second-sound wave.
The general expressions for the amplitudes are analyzed
when the normal fluid is only composed of phonons. Then
we find that the amplitude of the temperature oscillation, in a
second-sound wave in an anisotropic phonon system, can be
zero under some conditions. Furthermore, there is a value of
w such that the second-sound wave is stationary in the labo-
ratory frame. This condition is connected to wave blocking
in classical systems �see, e.g., Ref. 17 and horizons in white
hole analogs18,19�.

II. SYSTEM OF HYDRODYNAMIC EQUATIONS

We are interested in describing the evolution of small de-
viations of various parameters in helium from their station-
ary values. The typical feature of strongly anisotropic sys-
tems is their high value of the relative velocity w, which can
be comparable with the critical Landau velocity.11 For pho-
non systems such as the phonon pulses created in superfluid
liquid in experiments,1,6,9,10 w turns out to be close to the first
sound velocity. For phonon-roton systems, the maximum
value of w is determined by the stability conditions,2,4 and at
sufficiently low temperatures, can be close to the phase ve-
locity of rotons. So, we will linearize the system of hydro-
dynamic equations for superfluid helium without supposing
that the stationary values of superfluid and normal velocities
are small, as was supposed before.11,12,20

For small deviations from the stationary values we find a
solution, in the linear approximation, in the form of plane
waves exp�ikr− i�t�, where k is the wave vector and � is the
angular frequency. From the well-known hydrodynamic
equations for superfluid helium,11,20 in the nondissipative ap-
proximation, we get the following system of linear equations
for small deviations:

ṽs =
�̃

�u − vs��
k

k
, �1�

�vn� − u�S̃ + Sṽn� = 0, �2�

�vs� − u��̃ + w��̃n + �nṽn� + �sṽs� = 0, �3�

�vn� − u��w̃ + w� �̃n

�n
−

S̃

S
�� + � S

�n
T̃ + wṽn�k

k
= 0. �4�

Here � is the chemical potential of unit of mass of helium; S
is entropy of unit of volume; T is absolute temperature in
energy units. Small deviation of the values are marked with
the symbol “tilde,” and from now on, a symbol without a
“tilde” means the constant value of that variable. Here vs�

=vsk /k, and similarly for vn� and w�. The phase velocity of a
mode is given by u=� /k. From the condition that superfluid
motion is potential flow, i.e., vs=��, where � is the super-
fluid velocity potential 	which is not included in the system

of Eqs. �1�–�4�
, it follows that the oscillation of superfluid
velocity is always longitudinal, i.e., parallel to k. This result
is in agreement with Eq. �1� when u�vs�. So the mode u
=vs�, which is possible from system of Eqs. �1�–�4�, is pro-
hibited by the additional condition of the existence of a su-
perfluid velocity potential. At the same time, from Eq. �4� it
follows that the oscillation of the relative velocity w̃, as well
as normal velocity ṽn, has in the general case both longitu-
dinal and transverse components relative to vector k if the
constant value of w is not equal to zero. In contrast, when
w=0, the isotropic case, we only have velocity components
parallel to k so the normal fluid, as well as the superfluid, has
a velocity potential.

The system of Eqs. �1�–�4� determines the relations be-
tween the amplitudes of the oscillating values in the five
various modes since we have five independent equations for
five variables. These five variables can be chosen as follows:
ṽs� and two projections of relative velocity w̃ oscillations,
which lie in the plane formed by the vectors w and k, and

two scalar values, pressure P̃ and temperature T̃. All other
thermodynamic variables can be expressed by these vari-
ables, with the help of the thermodynamic equations

S̃ = � �S

�P
�

T,w
P̃ + � �S

�T
�

P,w
T̃ + � �S

�w2/2�P,T
ww̃ , �5�

�̃n = � ��n

�P
�

T,w
P̃ + � ��n

�T
�

P,w
T̃ + � ��n

�w2/2�P,T
ww̃ , �6�

�̃ = � ��

�P
�

T,w
P̃ + � ��

�T
�

P,w
T̃ + � ��

�w2/2�P,T
ww̃ , �7�

and the thermodynamic relation for the chemical potential

�̃ =
1

�
P̃ −

S

�
T̃ −

�n

�
ww̃ . �8�

Among the nine thermodynamic derivatives in Eqs. �5�–�7�
only six are independent because from Eq. �8� we have the
thermodynamic equalities

�

�T
�1

�
�

P,w
= −

�

�P
�S

�
�

T,w
, �9�

�

�w2/2�S

�
�

P,T
=

�

�T
��n

�
�

P,w
, �10�

�

�w2/2�1

�
�

P,T
= −

�

�P
��n

�
�

T,w
. �11�

The dispersion relation for one of the modes can be easily
found from Eq. �4�; At u=vn� =vnk /k, instead of two inde-
pendent equations in Eq. �4� we get just one equation. So, in
superfluid helium there exists the mode �=kvn which is the
transverse mode.16

To analyze the remaining four modes, which correspond
to the first and second sounds, it is convenient to choose the
coordinate frame with axis x directed along the equilibrium
value of the relative velocity w, and axis y in the plane that
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is determined by vector w and wave vector k with the con-
dition ky �0 �see Fig. 1�. If we take into account that Eqs.

�5�–�8� are expressed only in terms of P̃ and T̃, and w̃x,
where w̃x is the x component of the oscillation of the relative
velocity, we can simplify the system 	Eqs. �1�–�4�
. To do
this we take the yth component of Eq. �4� and using Eq. �1�
for the oscillation of yth component we get

w̃y =
sin �

u − vn�
� S

�n
T̃ + ww̃x +

w�

u − vs�

�̃� . �12�

Eliminating ṽs�, Eq. �1�, and w̃y, Eq. �12�, from the remaining
Eqs. �2� and �3� and the xth component of Eq. �4�, we get the
system of equations, which determine first and second sound

w̃x + cos ��u − vs��
�̃

�s
+ w sin2 �� �̃n

�n
−

S̃

S
� − w cos2 �

�̃n

�s

− cos ��u − vn��
�

�s

S̃

S
= 0, �13�

cos �
S

�n
T̃ − �u − vn��w̃x + w cos2 ��u − vn��

S̃

S

+ w	u − vn� + w cos � sin2 �
� S̃

S
−

�̃n

�n
� = 0, �14�

1

�
P̃ −

S

�
T̃ −

�n

�
ww̃x + w cos ��u − vs��

�̃n

�s
+ �u − vs���u

− vn��
�n

�s

S̃

S
− �u − vs��2 �̃

�s
= 0. �15�

The system of Eqs. �13�–�15�, with relations �5�–�7�,
gives three equations for the three variables P̃, T̃, and w̃x.
The consistency condition for these equations gives the dis-
persion relations for first and second sounds. This relation is
a quartic equation with four solutions and is explicitly
presented in Ref. 15. In that paper the first sound mode, in
anisotropic quasiparticle system of superfluid helium, was
studied for the case when the contribution of thermal
quasiparticles �n�� is small, which corresponds to

experiments.1,6,9,10 In this approximation, the velocity of first
sound is u= 	c, where c2= ��P /���T=0. In this paper we will
consider the second-sound mode in an anisotropic quasipar-
ticle system of superfluid helium.

Here we consider the wave vector k is fixed, but the fre-
quency � �or phase velocity u� should be determined from
the consistency conditions. Thus we may obtain modes with
positive or negative frequencies. In such an approach, the
sign of the frequency means nothing more than the direction
of wave propagation. A positive frequency means the wave
propagating from left to right �along k�, and a negative fre-
quency means the wave propagating from right to left
�against k�. Two solutions, which correspond to waves
propagating in the opposite directions, also exist in classical
acoustics.

III. PHASE AND GROUP VELOCITIES
OF SECOND SOUND

We consider second sound when the density of thermal
excitations is very small, i.e., �n /��1. This is an important
case as it can be experimentally attained.1,6–10 We choose the
coordinate frame in which the total equilibrium value of the
full momentum of helium j=vn�n+vs�s=0. In this frame, the
helium is motionless as a whole. This frame can always be
achieved by a Galilean transformation. In this frame, and
using the inequality �n /��1, we get in this approximation

vn = w, vs = 0. �16�

In all further results, we confine ourselves to the first non-
vanishing term in the series of the small parameter �n /�. Let
us suppose that the pressure oscillation is proportional to the
small density of thermal excitations in the normal fluid. In
contrast, the relative oscillation of temperature and relative
velocity depend, in general, on the zeroth order of �n /��1.
These statements will be justified later. From the equalities
�9� and �11�, we see that the coefficient of thermal expansion
of helium and the density depend on the relative velocity w,
and is determined only by the thermal excitations, and so is
small in this approximation. Hence, the contributions of the
second and the third terms in equality �7� are first order in
�n /��1, as well as the first term. Thus in this approximation
it follows from the thermodynamic relation �7� that density
oscillations also depends, to first order, on �n /��1.

To obtain the relationships between the amplitudes of the

oscillating values of temperature T̃ and the projection of the
relative velocity w̃x onto w, and to derive the dispersion re-
lation of second sound in zeroth order of �n /��1, we sub-
stitute relation �16� into Eqs. �13� and �14�. Omitting the
second and fourth terms in Eq. �13�, as they are a higher
order of smallness, and assuming that �s�� we get the fol-
lowing system of equations:

w̃x + w sin2 �� �̃n

�n
−

S̃

S
� − �u − w cos ��cos �

S̃

S
= 0,

�17�

FIG. 1. A region of normal fluid is shown schematically moving
through superfluid heluim. The coordinate frame is defined with the
x axis directed along the vector of the relative velocity w=vn−vs,
and the y axis lying in the plane which is defined by vector w and
wave vector k. The angle � is between vectors k and w.
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cos �
S

�n
T̃ − �u − w cos ��w̃x + w cos2 ��u − w cos ��

S̃

S

+ w�u − w cos3 ��� S̃

S
−

�̃n

�n
� = 0. �18�

These equations should be completed by the thermodynamic
relations for entropy 	Eq. �5�
 and normal density 	Eq. �6�
,
in which we should omit the first terms which involve pres-
sure, as they are determined by the small contribution of the
thermal excitations to the second-sound oscillations. The
condition for a nontrivial solution of this system of two

equations, for two variables �T̃ and w̃x�, gives the dispersion
equation to second order with respect to the phase velocity u.
This is because Eqs. �17� and �18� are first order in u and the
thermodynamic relations �5� and �6� do not include u. This
equation describes two modes of second sound in helium at
arbitrary values of w. The solution of this equation gives the
dispersion relation of second sound in helium,

u =
�

k
= Vd cos � 	 �V�

2 cos2 � + V�
2 sin2 � , �19�

where we use the following notation:

Vd = w�1 + 
�, 
 =
1 − � ln �n/� ln S

1 + �w2 , �20�

V�
2 = 
2w2 + u2

2, u2
2 =

c2
2

1 + �w2 , �21�

V�
2 = �
 + ��w2 + u2

2,

� =
c2

2 � ln �n/� ln�w2/2� − � ln �n/� ln S

1 + �w2 , �22�

c2 = 	�S2

�n
� �S

�T
�−1

, �23�

� = � � ln �n

�w2/2 � −
�n

S
� � ln �n

� ln S
�� � ln �n

�T
� , �24�

where � ln �n /� ln S= � � ln �n /�T��� ln S /�T�−1. In Eqs. �19�
and �23� the signs “plus” and “minus” correspond to the two
solutions for waves with different phase velocities �see the
end of Sec. II�.

It follows from expression �19� that the phase velocity of
second sound in helium, at w�0, is anisotropic. This depen-
dence can be described by three characteristic velocities: Vd,
V�, and V�. To clarify the physical meaning of these veloci-
ties, we calculate, using expression �19�, the phase velocity u
for the limiting cases �=0 and �=
 /2,

u�� = 0� = Vd 	 V�, u�� = 
/2� = 	 V�. �25�

These equations show that V� and V� are associated with the
longitudinal and transverse phase velocities and Vd is the
velocity of drift along the direction of w.

In the linear approximation, with respect to w, the Eqs.
�20�–�24� give

Vd = w�2 − � ln �n/� ln S� + O�w3�, w → 0, �26�

and

V�
2 = V�

2 = c2
2 + O�w2�, w → 0. �27�

From the last equation it follows that both longitudinal and
transverse velocities coincide with the usual isotropic veloc-
ity of second sound in the linear approximation with respect
to w. The drift velocity is proportional to w, but does not
exactly equal it. The relations �26� and �27�, after their sub-
stitution into Eq. �19�, give the result first derived in Ref. 12.
In that paper the dispersion relation of second sound was
obtained only to first order in the velocity w, and the contri-
bution of thermal expansion was neglected.

Let us note that we have derived the second-sound disper-
sion law 	Eq. �19�–�24�
 in zeroth order of �n /��1, i.e.,
neglecting the contribution of thermal expansion, but at ar-
bitrary values of the relative velocity w.

Using the general expression �19� for the phase velocity
of second sound, one can calculate the longitudinal �x pro-
jection� and the transverse �y projection� components of the
group velocity,

V�
�gr� =

d�

dk�

= Vd 	
V�

2k�

�V�
2k�

2 + V�
2 k�

2
, �28�

and

V�
�gr� =

d�

dk�

= 	
V�

2 k�

�V�
2k�

2 + V�
2 k�

2
, �29�

where k� =k cos � and k�=k sin �. We see from Eqs. �19�,
�28�, and �29� that, in general, the group speed is not equal to
the phase speed. Furthermore the group velocity is not in the
same direction as the phase velocity. Only for �=0 and �
=
 are the phase and group velocities equal and in the same
direction. The upper and lower signs in Eqs. �19�, �28�, and
�29� correspond to the two possible waves of second sound.
Eliminating the components of wave vector from Eqs. �28�
and �29�, we get the following equation:

�V�
�gr� − Vd�2

V�
2 +

V�
�gr�2

V�
2 = 1. �30�

Equation �30� gives the relation between the x component,
V�

�gr�, and the y component, V�
�gr�, of the group velocity of

second sound. It illustrates the anisotropy of the dispersion
relation �19�. Equation �30� is the equation of an ellipse with
the center at �Vd ,0� and half-axis V� and V�, in the plane
with coordinates �V�

�gr� ,V�
�gr��. We see that Vd has the features

of a “drift” velocity, and V� and V� have the features of
longitudinal and transverse group velocities. At small values
of the relative velocity �in the linear approximation with re-
spect to w� this ellipse degenerates to a circle 	see Eq. �27�

with a radius which is equal to the isotropic value of second-
sound velocity under the condition �n /��1. At high values
of w there exist several possibilities.
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In particular, the ellipse is strongly compressed in the lon-
gitudinal direction when the longitudinal V� and transverse
V� components are very different, V� �V�. It is possible,
when V�

�gr��0, that the ellipse is situated completely in the
right half plane from the ordinate axis. This case occurs
when the drift velocity is greater than longitudinal velocity:
Vd�V�. The positivity of the values V�

2 and V�
2 in expres-

sions �21� and �22� ensures that the condition of stability, for
the solutions of the equations for superfluid helium, is satis-
fied. Below, we work in the region of stable solutions.

IV. RELATIONS BETWEEN THE OSCILLATING VALUES

We express the amplitudes of the oscillating variables of
second sound as a function of the relative oscillation of en-

tropy S̃ /S, which is never zero. This is in contrast to the

amplitudes of temperature T̃ and relative velocity w̃x, which
can be equal to zero under some conditions in anisotropic
quasiparticle systems. To find the amplitudes, we substitute
Eq. �6� into Eq. �17� and solve it together with Eq. �5� to find

the amplitudes of temperature T̃ and relative velocity w̃x os-
cillations. In the zeroth order of �n /�, where �n /��1, we get

T̃ =
D

E

S̃

S
, �31�

w̃x =
C

E

S

�n

S̃

S
, �32�

where the coefficients

D = − � S

�n

� ln �n

�w2/2
− 2

� ln �n

�T
�w2 sin2 �

+
� ln �n

�T
�u cos � − w�w −

S

�n
, �33�

E = −
S

�n

� ln S

�T
�1 + �w2 sin2 �� , �34�

C = − �2
� ln S

�T
−

� ln �n

�T
�w sin2 � −

� ln S

�T
�u cos � − w�

�35�

do not contain the small parameter �n /�. In accordance with
the schema used in this paper, we do not take into account
further terms in the small parameter �n /� in Eqs. �33�–�35�.

From these expressions we see that oscillations of tem-
perature and relative velocity are not zero in the zeroth order
of the small parameter �n /� in compliance with the assump-
tions made earlier. The amplitudes of oscillation of the
chemical potential and superfluid velocity are first order in
�n /� 	see Eq. �8� and Eq. �1�, respectively
. Omitting the
small term that includes �̃ in Eq. �12� and using Eqs. �31�
and �32�, we find the amplitude of the relative velocity pro-
jection onto the y axis,

w̃y =
sin �

u − w cos �

S

�n

wC + D

E

S̃

S
. �36�

From this equation it follows that if vector k is parallel to the
relative velocity w, then the value of w̃y is equal to zero
because of the factor sin �. This result satisfies the symmetry
of the problem. Here we note that the projection of the rela-
tive velocity onto the y axis is zeroth order in the small
parameter �n /�.

To find the amplitude of the pressure oscillation in a
second-sound wave in first order in the small parameter �n /�,
we use Eq. �15� and take into account the approximate
equalities �s�� and vs�0 from Eq. �16�. Then, using Eqs.
�5�–�7�, as well as Eqs. �31� and �32�, we find the following
expression:

P̃ = �S�wC + D� + �nu�w cos �G − uE�

+ u2� ��

�T
D +

��

�w2/2
S

�n
wC�� 1

�1 − u2/c2�E
S̃

S
, �37�

where the coefficient G does not depend on the small param-
eter �n /�,

G = −
S

�n
� � ln S

�T
��1 −

� ln �n

� ln S
− ��u − w cos ��w cos �� .

�38�

It follows from expression �37� that the pressure oscillation
is small in second sound and is first order in the small pa-
rameter �n /�, as we supposed earlier.

The expression �8�, together with Eqs. �31�, �32�, and
�37�, determines the chemical-potential �̃ oscillation, which
from Eq. �1� directly gives the expression for the superfluid
velocity oscillation amplitude,

ṽs� =
1

�u
�P̃ −

S�wC + D�
E

S̃

S
� . �39�

We next find expressions for the projection of the normal
velocity oscillations onto the wave vector k and perpendicu-
lar to it,

ṽn� = �u − w cos ��
S̃

S
, �40�

ṽn� = w̃� = w�

G

E

S̃

S
. �41�

So, Eqs. �31�–�41�, together with the dispersion relation
�19�–�24�, solve the problem of the amplitude oscillation for
the basic variables for second sound, in the approximation
�n��, at arbitrary values of the relative velocity w. We see
that it is mainly temperature and normal velocity which os-
cillate, while pressure and superfluid velocity only weakly
oscillate. Thus, we have now verified all the assumptions we
made earlier. Unlike the isotropic case when w=0, in the
anisotropic case, the transverse component of normal veloc-
ity oscillations �41�, �38�, and �34� is not zero, i.e., the nor-
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mal fluid has a component which oscillates in a direction
perpendicular to the wave vector.

The relationships between the oscillating variables are
much simplified when the wave vector k is perpendicular to
w. Assuming �=
 /2 in Eqs. �31�–�39� we get the following
expressions for the oscillating variables in the two modes u
= 	V�:

w̃x = �Vd − w�
S̃

S
, �42�

w̃y = 	 V�

S̃

S
, �43�

T̃ =
�n

S
	V�

2 − �Vd − w�w

S̃

S
, �44�

P̃ =
V�

2

1 − V�
2 /c2��n

S
	V�

2 − �Vd − w�w

��

�T

+ �Vd − w�w
��

�w2/2� S̃

S
, �45�

ṽs� = 	
1

�

V�

1 − V�
2 /c2��n

S
	V�

2 − �Vd − w�w

��

�T

+ �Vd − w�w
��

�w2/2
− �n�1 − V�

2 /c2�� S̃

S
. �46�

From Eqs. �42� and �43� it follows that in this “transverse”
case, the transverse velocity V� completely determines the
yth component of the amplitude of the relative velocity os-
cillation, and the difference �Vd−w� determines its xth com-
ponent. From Eq. �45�, we see that the expression for the
pressure oscillations, in this case, has two terms. The first is
determined by the thermal-expansion coefficient, and the

second is proportional to the square of w at small w.
For the “longitudinal” case, k �w, we put �=0 in Eqs.

�31�–�35�. The relationships for the amplitudes in the two
modes u=Vd	V� are

w̃x = �Vd − w 	 V��
S̃

S
, w̃y = 0, �47�

T̃ =
�n

S
�c2

2 −
� ln �n

� ln S
�Vd − w 	 V��w� S̃

S
. �48�

From these expressions it follows that in the longitudinal
case, unlike the transverse one, the two modes of second
sound in general have different phase velocities Vd	V�

�which are equal to the group velocities� and different rela-
tionships between their amplitudes of the oscillating vari-
ables.

We now consider case when the relative velocity w is
small and restrict ourselves to first order in its magnitude.
From Eqs. �31�–�39� together with Eqs. �19�, �26�, and �27�
we get

u = c2 + w cos ��2 −
� ln �n

� ln S
� , �49�

w̃x = �c2 cos � + �1 −
� ln �n

� ln S
�w� S̃

S
, �50�

T̃ =
�n

S
c2

2�1 −
w

c2
cos �

� ln �n

� ln S
� S̃

S
, �51�

w̃y = c2 sin �
S̃

S
. �52�

For the oscillations of pressure and superfluid velocity, we
obtain the following amplitudes:

P̃ =
c2

2

1 − c2
2/c2
c2

2�n

S

��

�T
+

w

c2
cos ��− 2�n + c2

2 ��

�w2/2
+

4c2 − �3c2 − c2
2� � ln �n/� ln S

c2 − c2
2 c2

2�n

S

��

�T
�� S̃

S
, �53�

ṽs� =
c2

��1 − c2
2/c2�
c2

2�n

S

��

�T
− �1 −

c2
2

c2��n +
w

c2
cos ��− �1 +

c2
2

c2��n + c2
2 ��

�w2/2
+ 2

c2 + c2
2 − c2 � ln �n/� ln S

c2 − c2
2 c2

2�n

S

��

�T
�� S̃

S
.

�54�

From Eqs. �50� and �52� we see that the oscillations, which
are transverse to the wave vector of the relative velocity, are
first order in w,

w̃� = w��1 −
� ln �n

� ln S
� S̃

S
. �55�

From Eqs. �51�–�54� it follows that at �=
 /2 the oscillations
of temperature, pressure and superfluid velocity have no
terms linear in w, in agreement with expressions �44�–�46�.
We note that the condition of applicability of these expres-
sions is that w is small in comparison with the velocity of
second sound c2.
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At w=0, i.e., in the isotropic case, Eqs. �50�–�54� give the
results of Ref. 11 �for the case �n���, when the first term in
the right-hand side �rhs� of Eq. �54�, which includes the co-
efficient of thermal expansion, can be neglected compared to
the second term, which contains the normal density �n. In
contrast when phonons dominate, both terms contribute the
same order of magnitude. This follows from the thermody-
namic relation �9� together with the phonon equation of state.

V. SECOND SOUND IN ANISOTROPIC PHONON
SYSTEMS

The general relations obtained above can be much simpli-
fied when the normal fluid is comprised only of phonons.
These systems are presently most interesting from the point
of view of experiments,6,9,10 where strongly anisotropic sys-
tems �phonon pulses� with condition �n�� are created.
These phonon systems are characterized by large values of
the relative velocity w, which is close to the Landau critical
velocity when there are only phonons. There is a direct evi-
dence for this: a phonon pulse propagates in superfluid he-
lium as a whole, with a velocity which is experimentally
indistinguishable from the Landau critical velocity for
phonons. For phonons with a linear energy-momentum rela-
tion, ��p�=cp, the Landau critical velocity is equal to c.2

It is well known that in stationary conditions, it is impos-
sible to create a superfluid state in helium with a relative
velocity close to the Landau critical velocity. However in
phonon pulses with duration about tp=1�10−5−1�10−7 s,
it is possible to create large values of the relative velocity
w�0.98c without superfluidity breaking down. On the other
hand, in experiments6,9,10 the phonon pulse duration is much
greater than the time to attain equilibrium, mainly due to
interactions by three phonon processes, with characteristic
time t3pp�1�10−8 s for the same experimental
conditions.6,9,10 Fast relaxation has been observed directly in
the experiments with colliding phonon pulses,21 in which the
phenomenon of the “hot-line” appears �see also Ref. 22�.
Thus we can use a hydrodynamic approach for describing the
second sound in phonon pulses if the period � of the second-
sound wave satisfies the inequalities t3pp��� tp.

For phonons with a linear energy-momentum relation, the
normal-fluid density and entropy are determined by the equa-
tions in Ref. 11,

�n =
2
2

45

T4

�3c5�1 − w̄2�3 , �56�

S

�n
=

c2 − w2

T
, �57�

where we denote w̄=w /c.
Using Eqs. �20�–�24� taking into account Eqs. �56� and

�57� we find the following expressions for the drift velocity
Vd, longitudinal V�, and transverse V� velocities:

Vd =
2

3

w

1 − w̄2/3
, �58�

V� =
c
�3

1 − w̄2

1 − w̄2/3
, �59�

V� =
c
�3
� 1 − w̄2

1 − w̄2/3
. �60�

From Eqs. �59� and �60� we find that w�c for V� and V� to
be real. This coincides with the condition for thermodynamic
stability for systems with a linear dispersion law �see Ref. 2�,
and also with the Landau criterion that determines the critical
velocity in quasiparticle systems.

From Eqs. �58�–�60� we see that the drift velocity Vd
monotonically grows, with increasing w, from zero at w=0
to Vd=c at w=c. At small values of w�c, the drift velocity
Vd=2w /3. The longitudinal V� and the transverse V� veloci-
ties monotonically decrease from their maximum values at
w=0, which is equal to the isotropic second-sound velocity
c /�3 in the limit �n��, to their minimum value which is
zero at w=c. It should be noted that for phonon systems, the
transverse velocity is always greater than the longitudinal
velocity V��V�. At w�c /�3, the value Vd�V�. So, the
ellipse is completely in the right half plane �Vx

�gr��0�.
In the limiting case of strongly anisotropic systems, when

1−w /c=��1 from Eqs. �58�–�60� it follows:

Vd = c�1 − 2��, V� = c�3�, V� = c�� . �61�

In this case, the diagram of group velocity, calculated for the
typical experimental value of �=0.02, has the ratio between
its half axis V� /V� =1 /�3�=4. This is shown in Fig. 2 for a
second-sound mode in a strongly anisotropic system ��1.
In Fig. 2, the central point Vd moves with velocity Vd=c�1
−2���c, which is close to the velocity of first sound.

FIG. 2. The relation between the longitudinal V�
�gr� /c and trans-

verse V�
�gr� /c components of second-sound group velocity for a

strongly anisotropic phonon system. ��=1−w /c ,��1�.
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Second-sound dispersion relation �19� for phonon sys-
tems, taking account Eqs. �58�–�60�, can be written as fol-
lows:

u

c
=

2 cos �w̄ + R

3 − w̄2 , �62�

where we denote

R = 	 ��1 − w̄2��3 − �2 cos2 � + 1�w̄2� . �63�

When �=0 we see from the general Eqs. �19�, �28�, and �29�
that the phase velocity is equal to the group velocity. We
calculate the velocity for the phonon system from Eqs. �62�
and �63� with �=0. The two velocities u+ and u−, which
correspond to + and − signs in Eq. �63�, respectively, are
shown in Fig. 3. The velocity u− occurs when the second-
sound wave propagates in the opposite direction to the nor-
mal fluid. We see that u− changes from negative to positive
as w increases. When u−�0, the second-sound wave propa-
gates to the left faster than w propagates to the right, and
viceversa when u−�0. At w /c=0.58 the second-sound wave
is stationary in the laboratory frame. This condition is con-
nected to wave blocking in classical systems �see, e.g., Ref.
17 and horizons in white hole analogs18,19�.

VI. AMPLITUDE RELATIONS IN ANISOTROPIC
PHONON SYSTEMS

From the general relations �31�–�36�, which express the
amplitudes of the oscillating variables, in second sound, in
zeroth order of �n /��1, we obtain using the phonon equa-
tions of state �56� and �57�

T̃

T
= −

�2 cos2 � + 1�w̄4 − 2 sin2 �w̄2 + 4R cos �w̄ − 3

�3 − w̄2�	3 − �2 cos2 � + 1�w̄2

S̃

S
, �64�

w̃x

c
=

�1 − w̄2�	�2 cos2 � + 1�w̄3 − 3w̄ + 3R cos �

�3 − w̄2�	3 − �2 cos2 � + 1�w̄2


S̃

S
, �65�

w̃y

c
= − sin �

�1 − w̄2�	�2 cos2 � + 1�w̄2 + R cos �w̄ − 3

	�w̄2 − 1�w̄ cos � + R
	3 − �2 cos2 � + 1�w̄2


S̃

S
. �66�

The transverse component of the relative velocity of a second-sound wave in phonon system, from Eqs. �41� and �38� taking
into account Eqs. �56� and �57�, is

w̃�

w�

= −
�2 cos2 � + 1�w̄4 − 2�2 + cos2 ��w̄2 + 2R cos �w̄ + 3

�3 − w̄2�	3 − �2 cos2 � + 1�w̄2

S̃

S
. �67�

The components of the relative velocity w given by the
relations �65�–�67� also give the components of the normal-
fluid velocity, in the same zeroth-order approximation of the
small value �n /��1, because the superfluid velocity in the
wave of second sound is much smaller, of first order in
�n /��1. This follows from the general expressions
�37�–�39�.

The derivatives of density with respect to temperature and
relative velocity, occur in the general Eqs. �37� and �39� for

oscillations of pressure and superfluid velocity. Using the
thermodynamic relations �9� and �11�, we can express them
by the derivatives of entropy and normal density with respect
to pressure. Substituting relations �56� and �57� into Eqs. �9�
and �11�, we obtain for the phonon system

��

�T
= −

S	3uG + 1 + �uG − 1�w̄2

c2�1 − w̄2�

, �68�

FIG. 3. The velocities u+ /c and u− /c are shown as a function of
w /c when w and k are parallel, i.e., �=0, for the normal fluid
comprised only of phonons. The group and phase velocities are
equal when �=0. The velocities u+ /c and u− /c are for the second-
sound wave propagating parallel and antiparallel to the velocity of
the normal fluid, respectively. When w /c=1 /�3, u− /c=0 and the
second-sound wave is stationary in the laboratory frame.
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��

�w2/2
= −

�n	5uG + 1 + �uG − 1�w̄2

c2�1 − w̄2�

, �69�

where uG= �� /c���c /���=2.84 is the Gruneisen constant.

Expressions for the pressure and superfluid velocity in a
second-sound wave in a phonon system can be found, to a
first approximation with respect to the small value �n /�, by
substituting Eqs. �68� and �69� into the general relations �37�
and �39� taking account of Eqs. �33�–�35� and �38�. As a
result we find

P̃ = �nc2�− 4	�uG − 2�w̄4 − 2�3uG + 1�w̄2 + 9uG + 8
w̄4 cos4 � − 2R	uGw̄4 − 2�3uG + 5�w̄2 + 9uG + 14
w̄3 cos3 �

− 2�3 − w̄2��3w̄4 + 2uGw̄2 − 6uG − 7�w̄2 cos2 � + �3 − w̄2�R	�uG + 1�w̄4 − 2�4uG + 7�w̄2 + 15uG + 21
w̄ cos � − �1 − w̄2�

��3 − w̄2�2	�uG + 1�w̄2 − 3uG − 1
��2�3 − w̄2�	3 − �2 cos2 � + 1�w̄2
	w̄4 cos2 � + w̄2 cos2 � + w̄2 + 2Rw̄ cos � − 3
�−1 S̃

S
,

�70�

ṽs�

c
= − �uG + 1�

�n

2�
�3 − w̄2�2	4w̄4 cos4 � + 2w̄3 cos3 �R − 4w̄2 cos2 � − �5 − w̄2�Rw̄ cos � − w̄4 + 4w̄2 − 3


��	3 − �2 cos2 � + 1�w̄2
�−1��6w̄2 − 2�w̄3 cos3 � + �w̄2 + 5�Rw̄2 cos2 � + �w̄2 − 3��2w̄3 cos � + R��−1 S̃

S
. �71�

Thus Eqs. �64�–�66�, �70�, and �71�, using �63�, determine
explicitly the oscillations of temperature, the relative veloc-
ity components, pressure and superfluid velocity, in a
second-sound wave in an anisotropic phonon system. These
are expressed in terms of the oscillations of entropy, in the
approximation of the first nonvanishing terms containing the
small ratio �n /�. Note that the dispersion law, for the two
modes of second sound in anisotropic phonon systems, is
given by Eqs. �62� and �63�. When w is not small compared
to c, we see, from Eqs. �64�–�66�, �70�, �71�, and �63�, that
the amplitude relations depend strongly on the angle � be-
tween the wave vector k and the relative velocity w.

In the linear approximation with respect to w�c, the re-
lations �64�–�66�, �70�, and �71�, taking into account Eq.
�63�, are simplified,

T̃

T
= �1

3
�

4

3�3
cos �w̄� S̃

S
, �72�

w̃x

c
= �	

1
�3

cos � −
1

3
w̄� S̃

S
, �73�

w̃y

c
= 	

1
�3

sin �
S̃

S
, �74�

P̃ = − �nc2�3uG + 1

2
	

�3

18
�21uG + 23�cos �w̄� S̃

S
, �75�

ṽs�

c
= �

�n

�
�uG + 1���3

2
	

5

2
cos �w̄� S̃

S
. �76�

In Eqs. �72�–�76� the upper and lower signs correspond to
the ones in the expression

u = 	
c
�3

+
2

3
cos �w �77�

for the dispersion law for two modes of second sound in a
phonon system in the same linear approximation where w
�c.

In Figs. 4–8 we illustrate the amplitude relationships for

FIG. 4. The ratio of the relative amplitudes T̃S / �TS̃� for the
second-sound mode as a function of the angle � for phonon systems
at w=0 �curve 1�, w̄=1 /�3 �curve 2�, and w̄=0.97 �curve 3�, cal-
culated from Eq. �64� with account of Eq. �63� with sign “plus.”

SECOND SOUND IN AN ANISOTROPIC QUASIPARTICLE… PHYSICAL REVIEW B 79, 104508 �2009�

104508-9



the second-sound mode with “plus” sign in Eq. �63�, which
occurs in Eqs. �64�–�66�, �70�, and �71�.

In Fig. 4 we show the ratio of the relative amplitudes
T̃S / �TS̃� for the second-sound mode as a function of the
angle �, for phonon systems at w=0 �curve 1�, w̄=1 /�3
�curve 2�, and w̄=0.97 �curve 3�, calculated from Eq. �64�
taking into account Eq. �63�. For the case w=0 �curve 1� this
dependence is isotropic in accordance with Eq. �77�. For w̄
=1 /�3, which is equal to the isotropic phonon second-sound
velocity, the temperature oscillations are zero at �=0 �curve
2�. At w̄�1 /�3 the temperature oscillation becomes a sign-
changing function; it increases monotonically from a nega-
tive value at �=0 to a positive value at �=
 �curve 3�. Thus,
in anisotropic phonon systems in second-sound mode, it is
possible that the amplitude of temperature oscillations is
zero.

The angular dependences of ratios w̃xS / �cS̃� and w̃yS / �cS̃�
are shown in Figs. 5 and 6. They are calculated from Eqs.
�65�, �66�, and �63�. Curve 1 corresponds to phonon systems
with w=0, curve 2 corresponds to w̄=1 /�3, and curve 3
corresponds to w̄=0.97. We see that the amplitude of the
oscillation of the relative velocity decreases in absolute value
as the relative velocity increases.

In Figs. 7 and 8 we show the angular dependences of the

ratios ṽs��S / �c�nS̃� and P̃S / ��nc2S̃� corresponding to phonon

systems with w=0 �curve 1�, w̄=1 /�3 �curve 2�, and w̄
=0.97 �curve 3�, calculated from Eqs. �70� and �71� taking
into account Eq. �63�. We see that the amplitudes of oscilla-
tions of superfluid velocity and pressure in a phonon second-
sound wave increases by two orders of magnitude at small
angles, when the relative velocity increases from value w
=0 to w̄=0.97. It should be noted that for small oscillations,

which are under consideration here, S̃ /S�1. Therefore, tak-
ing into account the strong inequality �n /��1, the relative
amplitudes of superfluid velocity and pressure in second
sound are very small.

Figures 4–8 correspond to the second-sound mode with
the “plus” sign in Eq. �63�, which enters into formulas
�64�–�66�, �70�, and �71�. The second-sound mode, corre-
sponding to the “minus” sign in Eq. �63�, has amplitude re-
lations which can be obtained from the corresponding rela-
tions for the plus sign second-sound mode by substituting
�→
−�, w̃y→−w̃y, ṽs�→−ṽs�. It follows from relations
�64�–�66�, �70�, and �71� that the other values are unchanged.
Thus we can see from Fig. 5 that for strongly anisotropic
phonon system �curve 3�, the minus sign second-sound

FIG. 6. The angular dependency of ratio w̃yS / �cS̃� for second-
sound mode for phonon systems at w=0 �curve 1�, w̄=1 /�3 �curve
2�, and w̄=0.97 �curve 3�, calculated from Eqs. �66� and �63� with
“plus” sign.

FIG. 7. The ratio of the relative amplitudes ṽs��S / �c�nS̃� for the
second-sound mode as a function of the angle � for phonon systems
at w=0 �curve 1�, w̄=1 /�3 �curve 2�, and w̄=0.97 �curve 3�, cal-
culated from Eqs. �71� and �63� with “plus” sign. The ratios for the
cases w=0 �curve 1� and w̄=1 /�3 �curve 2� are shown multiplied
by a factor 10.

FIG. 8. The ratio of the relative amplitudes P̃S / ��nc2S̃� for the
second-sound mode as a function of the angle � for phonon systems
at w=0 �curve 1�, w̄=1 /�3 �curve 2�, and w̄=0.97 �curve 3�, cal-
culated from Eqs. �70� and �63� with “plus” sign. The ratios for the
cases w=0 �curve 1� and w̄=1 /�3 �curve 2� are shown multiplied
by a factor 10.

FIG. 5. The angular dependency of ratio w̃xS / �cS̃� for second-
sound mode for phonon systems at w=0 �curve 1�, w̄=1 /�3 �curve
2�, and w̄=0.97 �curve 3�, calculated from Eqs. �65� and �63� with
sign “plus.”
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mode, bearing in mind the transformation �→
−�, has rela-
tive temperature oscillations, whose amplitude is not small at
small angles.

VII. CONCLUSION

The main feature of a strongly anisotropic phonon system
in superfluid helium, created in experiments,1,6,9,10 is the high
value of the relative velocity, w, between the superfluid and
normal components. The second-sound mode in stationary
�w=0� helium and when w is small has been studied for
many years, but the analysis of second-sound propagation at
arbitrary w has not been done until now.

In this paper, the dispersion relation for second-sound
modes of superfluid 4He is obtained for arbitrary values of
the relative velocity w, when the thermal excitation contri-
bution is small, i.e., �n /��1. We show that the phase and
group velocities of second sound, in general, depend strongly
on the angle between the wave vector and the relative veloc-
ity of the normal and superfluid components, and can be
characterized by three characteristic velocities, the longitudi-
nal V�, perpendicular V�, and drift Vd velocities. The second-
sound group-velocity diagram is an ellipse in the plane with
axes V�

�gr� and V�
�gr�. We have found the relationships between

the amplitudes of the oscillating variables for second sound.
In the general case, the normal fluid not only has a velocity
component parallel to the wave vector, but also one trans-
verse to the wave vector. It is shown that mainly temperature
and the normal-fluid velocity oscillate, whereas the oscilla-
tions of pressure and the superfluid velocity are small. In the
limiting case w=0, the general relations for the second-sound

amplitudes obtained here are the same as those in Ref. 11
when �n /��1, which is the condition considered in this pa-
per.

The velocities and the relationships between the ampli-
tudes of the oscillating variables, in a second-sound wave,
are studied in detail for the case of an anisotropic phonon
system with arbitrary w. This condition is very important in
practice because high values of w are realized in phonon
pulses propagating in superfluid helium.1,6,9,10 For this case
we find that the amplitude of the temperature oscillation in a
second-sound wave in an anisotropic phonon system can be
zero at small angles between the relative velocity and the
wave vector �see Fig. 4�. The amplitudes of oscillations of
the superfluid velocity and pressure, in a phonon second-
sound wave, increase by two orders of magnitude, in the
region of small angles �see Figs. 7 and 8�, when the relative
velocity increases from w=0 to w /c=0.97. The latter value
is close to the typical experimental values in Refs. 9 and 10.

So, the second-sound mode in superfluid helium, at non-
zero values of the relative motion w, has unusual properties.
They are most apparent at large values of w. The authors
hope that the expressions for the phase and group velocities,
and for the relationships between the amplitudes of the os-
cillating variables in the second-sound mode of superfluid
helium, when there is relative motion between the normal
fluid and superfluid, obtained in this paper, will stimulate
new experiments to study second-sound propagation in an-
isotropic quasiparticle systems of superfluid helium.
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